
Permission to make digital or hard copies of part or all of this work for personal or classroom use is 
granted without fee provided that copies are not made or distributed for commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the Owner/Author. 
SIGGRAPH 2013, July 21 – 25, 2013, Anaheim, California. 
2013 Copyright held by the Owner/Author. 
ACM 978-1-4503-2261-4/13/07 

Bubbles and Foam in Partysaurus Rex
Adam Harder
Pixar Canada

Chris Mangnall
Pixar Canada

Pixar’s short film Partysaurus Rex required simulated soap bubbles
– a lot of soap bubbles, including bathtub foamscapes consisting of
more than 3 million individual bubbles. Bubbles and foam acted as
sets and set dressing, floated on cascades of moving water, coated
and interacted with characters, and burst when hit by droplets of
water from a shower. All of this was accomplished with a combi-
nation of a Houdini bubble model and solver, a set of RenderMan
shaders and plugins, and a great deal of painstaking shot work.

Figure 1: c©2012 Disney / Pixar. All rights reserved.

1 Modeling and Simulation

We began by generating bubbles as spheres whose radii were cho-
sen stochastically. When two bubbles come into contact in the real
world, their respective centres move closer together as surface ten-
sion causes the bubble film to maintain minimum area. In our
model, we simulated this adhesive force by adding a spring between
each pair of bubbles that were in contact. The rest length of a newly
created spring was some user-controlled fraction of the sum of the
radii of the two bubbles. Large numbers of bubbles joined together
by these springs behaved as a cohesive foam. Springs were deleted
when they were stretched past a user controlled snap length, typ-
ically 110% of the rest length. This allowed a foam (consisting
of a large number of bubbles) to tear apart as characters or water
currents pushed through it.

The system was solved using a position-based dyamics approach.
The length constraints for the springs were solved using successive
over-relaxation, and the system was moved forwards using a Verlet
integration scheme. Collisions were resolved by moving colliding
bubbles to the surface of the collider and inheriting the velocity
from the colliding surface.

Large masses of bubbles were sculpted in Maya as polyhedral vol-
umes, then used as stand-ins for Layout and Animation. In the
FX department, these stand-ins were combined and voxelized us-
ing Houdini’s volume tools. Procedural methods were used to add
stochastic detail. The resulting volumes were then filled with bub-
bles, and passed to the bubble simulator.

To fill a volume with bubbles, we started by selecting a large cube
of pre-simulated bubbles with a particular set of bubble parameter

values. We had several such cubes containing different species of
foam prepared for use in different situations.

A wide variety of foam species could be achieved by varying the
bubble spring snap length and the relaxation parameter. Low values
for the relaxation parameter resulted in more wobbly foam, higher
values increased rigidity. Lower snap lengths caused more plastic-
ity, with higher values causing a more brittle foam.

A soap scum layer of very small bubbles was generated using a
particle system constrained to the water surface and advected using
a fluid sim.

2 Shading and Rendering

One of the key visual characteristics of real life bubbles in con-
tact with one another is the shape of the interface between them.
For very simple systems of two bubbles, the interface forms a flat-
ter spherical cap. These areas provide broader specular highlights
which causes a characteristic twinkling in the foam when bubbles
move and interfaces are created and destroyed. For larger systems,
the interfaces are not necessarily spherical; however approximat-
ing them as spherical is more efficient and proved to be adequate
for our purposes. The bubbles were rendered as displaced spheres,
using a RenderMan procedural to convert particle caches from Hou-
dini to RiSpheres at render time. A custom shading dso was writ-
ten to read the particle caches. The displacement shader iterated
through pairs of overlapping bubbles and displaced the surface of
the current bubble to coincide with the computed spherical bubble
interface surfaces.

Large, dense systems of bubbles are highly scattering, due to re-
fraction through the meniscus along the many edges between in-
terfaces. To avoid costly ray tracing, we approximated this effect
using RenderMan point-based scattering, using one point per bub-
ble. Deep shadow maps were generated for diffuse effects using
the same shortcut. Each bubble was tagged with its depth from
the surface of the bubble model, which allowed us to transition the
shading from sharp, glossy reflections on the outside, to the much
softer scattering approximation on the inside. A third blobby sur-
face model was used for occlusion.

Masses of foam were often hollow, with an outer shell of bubbles
surrounding an empty interior. This technique reduced the number
of bubbles to be simulated and also improved rendering efficiency
by reducing the number of transparent bubble surfaces. To guar-
antee that the renderer could not see through to the empty interior,
the depth value tagged on each bubble was used to gradually in-
crease opacity in the shader so that full opacity was reached at the
innermost layer of bubbles.

3 Acknowledgements

We would like to thank Darwyn Peachey and our colleagues in the
Pixar Canada FX team.


